1,198 research outputs found

    Emoticon-based Ambivalent Expression: A Hidden Indicator for Unusual Behaviors in Weibo

    Full text link
    Recent decades have witnessed online social media being a big-data window for quantificationally testifying conventional social theories and exploring much detailed human behavioral patterns. In this paper, by tracing the emoticon use in Weibo, a group of hidden "ambivalent users" are disclosed for frequently posting ambivalent tweets containing both positive and negative emotions. Further investigation reveals that this ambivalent expression could be a novel indicator of many unusual social behaviors. For instance, ambivalent users with the female as the majority like to make a sound in midnights or at weekends. They mention their close friends frequently in ambivalent tweets, which attract more replies and thus serve as a more private communication way. Ambivalent users also respond differently to public affairs from others and demonstrate more interests in entertainment and sports events. Moreover, the sentiment shift of words adopted in ambivalent tweets is more evident than usual and exhibits a clear "negative to positive" pattern. The above observations, though being promiscuous seemingly, actually point to the self regulation of negative mood in Weibo, which could find its base from the emotion management theories in sociology but makes an interesting extension to the online environment. Finally, as an interesting corollary, ambivalent users are found connected with compulsive buyers and turn out to be perfect targets for online marketing.Comment: Data sets can be downloaded freely from www.datatang.com/data/47207 or http://pan.baidu.com/s/1mg67cbm. Any issues feel free to contact [email protected]

    Control strategies for power distribution networks with electric vehicles integration.

    Get PDF

    Combining Subgoal Graphs with Reinforcement Learning to Build a Rational Pathfinder

    Full text link
    In this paper, we present a hierarchical path planning framework called SG-RL (subgoal graphs-reinforcement learning), to plan rational paths for agents maneuvering in continuous and uncertain environments. By "rational", we mean (1) efficient path planning to eliminate first-move lags; (2) collision-free and smooth for agents with kinematic constraints satisfied. SG-RL works in a two-level manner. At the first level, SG-RL uses a geometric path-planning method, i.e., Simple Subgoal Graphs (SSG), to efficiently find optimal abstract paths, also called subgoal sequences. At the second level, SG-RL uses an RL method, i.e., Least-Squares Policy Iteration (LSPI), to learn near-optimal motion-planning policies which can generate kinematically feasible and collision-free trajectories between adjacent subgoals. The first advantage of the proposed method is that SSG can solve the limitations of sparse reward and local minima trap for RL agents; thus, LSPI can be used to generate paths in complex environments. The second advantage is that, when the environment changes slightly (i.e., unexpected obstacles appearing), SG-RL does not need to reconstruct subgoal graphs and replan subgoal sequences using SSG, since LSPI can deal with uncertainties by exploiting its generalization ability to handle changes in environments. Simulation experiments in representative scenarios demonstrate that, compared with existing methods, SG-RL can work well on large-scale maps with relatively low action-switching frequencies and shorter path lengths, and SG-RL can deal with small changes in environments. We further demonstrate that the design of reward functions and the types of training environments are important factors for learning feasible policies.Comment: 20 page

    Survey and Characterization of User Profiles and User Requirements:RTLabOS D2.2

    Get PDF

    Structural Embedding of Syntactic Trees for Machine Comprehension

    Full text link
    Deep neural networks for machine comprehension typically utilizes only word or character embeddings without explicitly taking advantage of structured linguistic information such as constituency trees and dependency trees. In this paper, we propose structural embedding of syntactic trees (SEST), an algorithm framework to utilize structured information and encode them into vector representations that can boost the performance of algorithms for the machine comprehension. We evaluate our approach using a state-of-the-art neural attention model on the SQuAD dataset. Experimental results demonstrate that our model can accurately identify the syntactic boundaries of the sentences and extract answers that are syntactically coherent over the baseline methods

    Homotypic fusion of endoplasmic reticulum membranes in plant cells

    Get PDF
    The endoplasmic reticulum (ER) is a membrane-bounded organelle whose membrane comprises a network of tubules and sheets. The formation of these characteristic shapes and maintenance of their continuity through homotypic membrane fusion appears to be critical for the proper functioning of the ER. The atlastins (ATLs), a family of ER-localized dynamin-like GTPases, have been identified as fusogens of the ER membranes in metazoans. Mutations of the ATL proteins in mammalian cells cause morphological defects in the ER, and purified Drosophila ATL mediates membrane fusion in vitro. Plant cells do not possess ATL, but a family of similar GTPases, named root hair defective 3 (RHD3), are likely the functional orthologs of ATLs. In this review, we summarize recent advances in our understanding of how RHD3 proteins play a role in homotypic ER fusion. We also discuss the possible physiological significance of forming a tubular ER network in plant cells
    corecore